Biological function of a polysaccharide degrading enzyme in the periplasm

نویسندگان

  • Yajie Wang
  • M. Fata Moradali
  • Ali Goudarztalejerdi
  • Ian M. Sims
  • Bernd H. A. Rehm
چکیده

Carbohydrate polymers are industrially and medically important. For instance, a polysaccharide, alginate (from seaweed), is widely used in food, textile and pharmaceutical industries. Certain bacteria also produce alginate through membrane spanning multi-protein complexes. Using Pseudomonas aeruginosa as a model organism, we investigated the biological function of an alginate degrading enzyme, AlgL, in alginate production and biofilm formation. We showed that AlgL negatively impacts alginate production through its enzymatic activity. We also demonstrated that deletion of AlgL does not interfere with polymer length control, epimerization degree or stability of the biosynthesis complex, arguing that AlgL is a free periplasmic protein dispensable for alginate production. This was further supported by our protein-stability and interaction experiments. Interestingly, over-production of AlgL interfered with polymer length control, suggesting that AlgL could be loosely associated with the biosynthesis complex. In addition, chromosomal expression of algL enhanced alginate O-acetylation; both attachment and dispersal stages of the bacterial biofilm lifecycle were sensitive to the level of O-acetylation. Since this modification also protects the pathogen against host defences and enhances other virulence factors, chromosomal expression of algL could be important for the pathogenicity of this organism. Overall, this work improves our understanding of bacterial alginate production and provides new knowledge for alginate production and disease control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Lycium barbarum. polysaccharide on type 2 diabetes mellitus rats by regulating biological rhythms

Objective(s): Type 2 diabetes mellitus (T2DM) is associated with circadian disruption. Our previous experimental results have showed that dietary Lycium barbarum. polysaccharide (LBP-4a) exhibited hypoglycemic and improving insulin resistance (IR) activities. This study was to explore the mechanisms of LBP-4a for improving hyperglycemia and IR by regulating biological rhythms in T2DM rats. Mat...

متن کامل

Biochemical properties and biological functions of the enzyme rhodanese in domestic animals

The enzyme rhodanese (thiosulfate: cyanide sulfurtransferase) is a ubiquitous enzyme and its activity ispresent in all living organisms. Many functions including cyanide detoxification, formation of iron-sulfurcenters and participation in energy metabolism have been attributed to this enzyme. The enzyme catalyzesthe transfer of a sulfur atom from sulfane containing compounds (such as thiosulfat...

متن کامل

Structure and function of bacterial super-biosystem responsible for import and depolymerization of macromolecules.

Generally, when microbes assimilate macromolecules, they incorporate low-molecular-weight products derived from macromolecules through the actions of extracellular degrading enzymes. However, a Gram-negative bacterium, Sphingomonas sp. A1, has a smart biosystem for the import and depolymerization of macromolecules. The bacterial cells directly incorporate a macromolecule, alginate, into the cyt...

متن کامل

Purification and properties of an enzyme capable of degrading the polysaccharide of the cyanobacterium, Nostoc commune.

A novel Nostoc commune-polysaccharide (NPS)-degrading enzyme with a molecular mass of 128.5 kDa was purified from Paenibacillus glycanilyticus DS-1. The optimum pH and temperature of the enzyme activity were 5.5 and 35 degrees C, respectively. The enzyme completely degraded NPS to oligosaccharides, ranging from tetra to hexasaccharides and could degrade the xylan weakly whereas xanthan, gellan,...

متن کامل

A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus

The degradation of plant biomass by saprophytes is an ecologically important part of the global carbon cycle, which has also inspired a vast diversity of industrial enzyme applications. The xyloglucans (XyGs) constitute a family of ubiquitous and abundant plant cell wall polysaccharides, yet the enzymology of XyG saccharification is poorly studied. Here, we present the identification and molecu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016